中2数学「連立方程式」代入法はこの3パターンで完璧! | たけのこ塾 勉強が苦手な中学生のやる気をのばす!

長野 オープン 看護 師 募集
July 30, 2024, 2:50 pm

【管理人おすすめ!】セットで3割もお得!大好評の用語集と図解集のセット⇒ 建築構造がわかる基礎用語集&図解集セット(※既に26人にお申込みいただきました!) 代入法(だいにゅうほう)とは、連立方程式の解き方の1つです。1つの方程式を「x=」または「y=」の形にして、もう一方の方程式に代入し、解を求める方法です。その他、加減法という連立方程式の解き方もあります。今回は代入法の意味、連立方程式の解き方、代入法のやり方、移項、加減法との関係について説明します。連立方程式、加減法の詳細は、下記が参考になります。 連立方程式とは?1分でわかる意味、問題の解き方、加減法と代入法 加減法とは?1分でわかる意味、連立方程式の問題の解き方、代入法との関係 100円から読める!ネット不要!印刷しても読みやすいPDF記事はこちら⇒ いつでもどこでも読める!広告無し!建築学生が学ぶ構造力学のPDF版の学習記事 代入法とは?

  1. 【中2数学】「連立方程式」の加減法と代入法を理解しよう!勉強する時のポイントも紹介! |札幌市 西区(琴似・発寒) 塾・学習塾|個別指導塾 マナビバ

【中2数学】「連立方程式」の加減法と代入法を理解しよう!勉強する時のポイントも紹介! |札幌市 西区(琴似・発寒) 塾・学習塾|個別指導塾 マナビバ

中学2年生の数学では1年生で習った方程式をさらに掘り下げ、『連立方程式』を学びます。 連立方程式はつまづきやすいポイントがいくつかありますが、基本を一つずつ整理していけばきちんと理解できるはずです。 今回は連立方程式の2種類の解き方「代入法」と「加減法」についてそれぞれ解説していきます。 連立方程式とは 連立方程式を簡単に説明すると 「複数の解を求めるための、複数の方程式を組み合わせた式」 です。 たとえば 「A君はB君の2倍の年齢である」 これをA君がx歳、B君がy歳として方程式を立てると、 \(x=2y\) となります。しかし未知の文字が2つあるのでこれだけでは解の候補が絞れず、それぞれの値を求めることができません。 \((x=2,y=1)\)\((x=4,y=2)\)\((x=6,y=3)\)\((x=8,y=4)\)\((x=10,y=5)\)・・・ そこで 「A君はB君よりも5歳年上である」 という情報が加われば次の式を立てることができます。 \(x=y+5\) このように異なる情報から複数の方程式を立て、これらを並べたものを『連立方程式』と言います。 \(\begin{eqnarray} \left\{ \begin{array}{l} x=2y \\ x=y+5 \end{array} \right. \end{eqnarray}\) 方程式に未知の文字が2つ含まれる場合、1つの方程式ではそれを解くことができませんが、 2つの方程式があればそれぞれの値を求めることができるのです。 実際に解の候補は\((x=10,y=5)\)の1つに絞られます。 今回は連立方程式をどのように解くのかを見ていきましょう。 連立方程式の2つの解き方 連立方程式の解き方には代入法と加減法の2種類があります。 代入法 代入法とは、 「一方にもう一方の式を代入することで文字を一つ消去し、連立方程式を解く方法」 です。 たとえば以下の連立方程式を代入法で解いてみましょう。 \(\begin{eqnarray} \left\{ \begin{array}{l} x=2y \\ x=y+5 \end{array} \right. \end{eqnarray}\) このように一方の方程式が「\(x=\)」や「\(y=\)」の形なら、そのまま右辺をもう一方の式に代入することができます。 こうすることで一方の文字が消えるので、一次方程式になります。一次方程式は1年生のときに習った通りに解きましょう。 一次方程式の解の求め方 "一次方程式"は中学校1年生の数学で習いますが、今後習う"連立方程式"や"二次方程式"などを解くための基盤となる重要な単元です。 ただ... 一次方程式から導いたひとつの解を最初の連立方程式のどちらかに代入すればもう一方の解も求まります。 加減法 加減法とは 「2つの方程式を足したり引いたりして文字を一つ消去し、連立方程式を解く方法」 です。 たとえば以下の連立方程式を加減法で解いてみましょう。 \(\begin{eqnarray} \left\{ \begin{array}{l} 3x+2y=5 \\ x-2y=7 \end{array} \right.

式①' − 式② より \(\begin{array}{rr} 6x − 2y =& 10\\+) 5x + 2y =& 1\\ \hline 11x =& 11\end{array}\) STEP. 3 もう 1 つの未知数を求める 元の式①、②のどちらかを選び、「求めたい未知数 = 〜」の形に変形したあと、先ほど求めた未知数を代入します。 「未知数 = 〜」の形に変形しやすい式は次の順番で検討します。 求めたい未知数に 係数がついていない 式 求めたい未知数に係数がついているが、 なるべく係数が小さい 式 例題では、式①の方が「\(y =\) 〜」の形に変形しやすそうです。 式①を変形したあと、\(x = 1\) を代入しましょう。 式①を変形して \(y = 3x − 5\) \(x = 1\) を代入して \(\begin{align}y &= 3 \cdot 1 − 5 \\&= 3 − 5 \\&= \color{red}{−2}\end{align}\) 答え: \(\color{red}{x = 1, y = − 2}\) 以上で、加減法の完成です。 式①を \(2\) 倍して \(6x − 2y = 10 …①'\) \(x = 1\)を代入して \(\begin{align}y &= 3 \cdot 1 − 5 \\&= 3 − 5 \\&= −2\end{align}\) 以上が加減法での連立方程式の解き方でした! 連立方程式の計算問題 代入法・加減法の向いている問題を見極めてみましょう。 補足 代入法と加減法の使い分けがめんどくさいという人は、いつも得意な方法で解いて構いません。 ただし、代入法が向いている問題、加減法が向いている問題というのも確かに存在します。 計算問題①「基本の連立方程式」 計算問題① 次の連立方程式を解け。 \(\left\{\begin{array}{l}4x − 3y = 18 \\2x + y = 4\end{array}\right. \) この問題では、\(2\) つ目の式に 係数のついていない未知数 \(y\) がいます。 このような問題には、 代入法 が向いています。 それでは、代入法で解いていきましょう。 \(\left\{\begin{array}{l}4x − 3y = 18 …① \\2x + y = 4 …②\end{array}\right.