『物理のための数学』|感想・レビュー - 読書メーター, 地球 に 隕石 が 落ち ない 理由

トーハツ 2 馬力 リミッター 解除
July 31, 2024, 9:33 am

物理のための数学2 科目ナンバリング U-SCI00 22218 LJ57 開講年度・開講期 2021 ・ 前期 単位数 2 単位 授業形態 講義 配当学年 2回生以上 対象学生 使用言語 日本語 曜時限 金4 教員 池田 隆介 (理学研究科 准教授) 授業の概要・目的 物理学では、古典論から量子論に移行すると複素数を用いた理論的記述が必要不可欠となるため、早期から複素関数に習熟しておくのが望ましい。本講義では、物理学を理解し展開していくために必要な複素関数論と複素積分の応用について講述する。まず、複素関数による記述に慣れ親しむことから始めて、複素平面で定義された微分可能な関数(正則関数)が有する性質を確認し、複素積分の方法と実積分へのその応用に進む。具体的な問題に応用して、さまざまな解析方法や積分計算についての問題演習を重視する。 到達目標 複素関数の性質とその正則性に基づいて得られる数学的な知見について理解し、物理学の記述に欠かせない関数の取り扱いに関する基礎の修得を目標とする。特に、複素積分の計算に精通し、関数の様々な展開方法の利用の仕方を理解し、それらを実際に道具として使いこなせるようになることを目指す。 授業計画と内容 (授業計画と内容) 以下の内容について講義を行う。ただし、進行状況によって多少の変更がありうる。 1. 複素数と複素関数【1週】 2. 正則関数(複素関数の微分,コーシー-リーマンの方程式,ベキ級数で定義される 正則関数)【2 週】 3. 線積分とコーシーの積分定理(グリーンの定理、複素積分の定義,コーシーの積 分公式)【1週】 4. 解析性と展開及び特異点(テーラー展開、ローラン展開)【1週】 5.留数定理と複素積分【2 週】 6. 積分の主値と分散関係(デルタ関数)【1週】 7. 『物理のための数学』|感想・レビュー - 読書メーター. 解析接続と多価関数(リーマン面)【1 週】 8.多価関数を含む複素積分【1 週】 9. 部分分数展開 【1 週】 10. 調和関数と等角写像 【1. 5 週】 11. フーリエ変換と複素積分【1. 5週】 12. 試験 履修要件 「物理学基礎論A・B」、「力学続論」、「微分積分学A・B」の内容の理解を前提とする。「物理のための数学1」をあわせて履修することが望ましい。 授業外学習(予習・復習)等 復習が必須。各自で演習ができるように、何度か演習問題を配布する。レポート問題はこれらの演習問題やその類似問題から出題する。 検索結果に戻る シラバス検索トップへ シラバス一覧へ

  1. 物理のための数学 和達
  2. 物理のための数学 岩波書店
  3. 物理のための数学
  4. 隕石(いんせき)が落ちて恐竜とかは絶滅したのに、なぜ今の地球には生き物がたくさんいるの?|読むらじる。|NHKラジオ らじる★らじる
  5. なぜ隕石は地球にぶつからないのですか? - Quora

物理のための数学 和達

微分という完全に数学的な操作によって、電子のエネルギーを抽出できるように仕掛けていた わけです。 同様に波動関数を x で微分して運動エネルギーを抽出したいところですが、運動エネルギーには p 2 が必要です。難しいことはありません。1 階微分で関数の形が変わらないことはわかっているので、単に 2 回微分することで、p が 2 回出てくることが想像できます。 偏微分の結果をまとめましょう。右辺が運動エネルギーになるように両辺に係数を掛けてやります。 この式は、「 波動関数を 2 回位置微分する (と同時におまじないの係数をかける) と、関数の形は変えずに 運動エネルギーを抽出できる 」ことを表しています。 Step 5: 力学的エネルギーの公式を再現する 最後の仕上げです。E = p 2 /2m の公式と今までの結果を見比べます。すると、波動関数の時間微分 (におまじないを掛けたもの) と波動関数の位置の 2 階微分 (におまじないを掛けたもの) が結びつくことがわかります。これらを等式で結べば、位置エネルギーがない一次元のシュレディンガー方程式になります。 ここから大胆に飛躍して、ポテンシャルエネルギー V を与えて、三次元に拡張すれば、無事一般的なシュレディンガー方程式となります。 で、このシュレディンガー方程式はどういう意味? Amazon.co.jp: 物理のための数学 (物理入門コース 新装版) : 和達 三樹: Japanese Books. 「 ある関数から微分によって運動量やエネルギーをそれぞれ抽出すると、古典的なエネルギーの関係が成り立った。そのような関数はなーんだ? 」という問題を出題してるようです (2) 。導出の過程を踏まえると、なんらかの物理的な状況を想定しているわけではなく、完全に数学的な操作で導出されたようにさえ見えます。しかし実際に、この方程式を解いて得られた波動関数は実験事実をうまく説明できるのです。そのことについては、次回以降の記事でお話しすることにします。 ともかく、シュレディンガー方程式の起源に迫ることができたので、この記事の残りを使って「なぜ複素数を使ったのか?」という疑問について考えます。 どうして複素数をつかったの? 三角関数では微分するごとに sin とcos が入れ替わって厄介 だからです。たとえば sin 関数を t で微分すると、t の係数が飛び出てきて、sin 関数は cos 関数に変わってしまいます (下式)。これでは「関数の形を変えずに E を抽出する」ことができません。 どうして複素数の指数関数が波を表すの?

物理のための数学 岩波書店

勉強 2020. 03. 01 2018. 12. 03 こんにちは、大学生ブロガーのヒデ( @hideto1939)です。 大学で物理を学んでいます。 大学で物理を学ぶから、物理数学の勉強をしたいんだけど、どの教材が良いのか分からない。。実際に大学で物理を学んでいる大学生の意見が聞きたいな。。 今回は、こういった疑問に答えます。 ぼく自身、今現在(2020年)大学で物理を学んでおり、様々な物理数学の本を見てきたので、事実に基づいた意見を提供できるか と思います。 ただ、僕もすべての物理数学の本を把握しているわけではないので、今回紹介する本はあくまで、 「僕が今まで見てきた中」 でおすすめの本であるということはご了承ください。 ヒデト 物理数学の本を購入する際の、一つの判断材料にしていただけたら嬉しいです。 では、始めます! 物理のための数学 和達. 物理数学とは何か?【大学物理の前提】 名前の通り。 物理を学ぶ際に必要となる数学をまとめたもの ですね。 ヒデト 大学で物理を学ぶなら、間違いなく学んでおく必要があります!

物理のための数学

化学者だって数学するっつーの! : 定常状態と変数分離 なぜ電子が非局在化すると安定化するの? 【化学者だって数学するっつーの! : 井戸型ポテンシャルと曲率】 参考文献 シュレディンガー方程式の導出の手続きは、主に次の書籍を参考にしました (a) 砂川重信, 1 章 電子の粒子性と波動性「量子力学」岩波書店, 1991, pp1-20. (b) 砂川重信, 5 章 シュレディンガー方程式「量子力学の考え方 物理の考え方 4 」岩波書店, 1993, pp61–77. この考え方は, このサイトから学びました: E-man の物理学, 量子力学, シュレディンガー方程式, (2018 年 7 月 29 日アクセス). 本記事のタイトルは, お笑い芸人の脳みそ夫さんからインスパイアされて考案しました. 関連書籍

『物理入門コース』のシリーズの物理数学に当たる本です。 なお、対応した演習書も存在します。 私は院試対策に演習書とあわせて購入しました。 やってみて気づいた特徴、長所、短所をあげたいと思います。 構成は、 線形代数、常微分方程式、 ベクトル解析、多重積分(面積分、線積分)、 フーリエ展開(級数)、偏微分方程式 となります。 やはり内容は丁寧で、大学初学年の微分積分学があれば じっくり計算をたどって最後まで読むことはできるでしょう。 ただ数学なので演習は必要です。 本書について気に入っている点は、本書や演習書の問題の選び方です。 物理数学は基本的に「物理の問題を解くための数学」であると思います。 本書はいろいろな物理分野から、その単元に関連した問題を選んでおり 物理に少し興味のある学生なら、演習はそれほど苦にはならないと思いますよ。 私にはありがたい本でした。2次元熱伝導方程式は院試にも出ましたし。(おかげで解けました) (短所) ''* 物理数学は本書で終わりではありません。本書にない内容では ・複素関数論 ・特殊関数 ・ラプラス変換 などが重要なものとして残っています。 ですが、本書は物理数学の基礎をマスターするにはいい本だと思うので、 残りの分野は必要になったら参考書を開けるのでいいのではないでしょうか? ''* 第2章 線形代数がわかりにくかった。 だいたい1冊かかる内容を1章分でやろうとしているので、必要な内容、演習が足りないのではないかと感じた。 特に第2章最後にある「テンソル」は、わかりにくかったので、初読の際には飛ばしてしまいました。

松井 それは簡単。プランクトンの 化石 はどの地層にもたくさん含まれているから、地層を調べて比較すればいい。「K/T境界」の前(白亜紀)と後(第三紀)では、地層に含まれる有孔虫の化石の数が全然違うんです。 ―ああ、なるほど。 松井 この問題を科学的に解明したのがわれわれのグループ論文で、だいたい次のようなメカニズムです。ユカタン半島は主に石灰岩と石膏でできていて、そこに巨大な隕石がものすごい速度で衝突した。そのエネルギーで大爆発が起き、石膏の岩石のなかの成分が蒸発してSO3(三酸化硫黄)になり、激しく大量の酸性雨を地球全土に降らせた。 それによって海水が酸性化し、有孔虫の石灰(カルシウム)の殻も溶かされ、ほとんど死滅したと。だからこの論文の重要性は恐竜絶滅の話じゃなくて、有孔虫のほとんどが絶滅したメカニズムを説明したところなんだけど、「プランクトン絶滅」といっても一般の人には地味らしく(笑)、報道では恐竜絶滅の原因が解明、とされたようです。もちろん海中のプランクトンは食物連鎖の根幹だから、そこは非常に強い関係があるけども。 ―ということは、隕石がユカタン半島に落ちたってことが、恐竜たちの運命を決めたと? 松井 例えば飛んできたのが1時間遅くて、別の場所に落ちていたら、例えばアメリカ大陸に落ちていたら、そこは石灰岩と石膏もないから大量の酸性雨も降らず、これほどの大量絶滅は起きなかった。 ―恐竜も生き残れたと。 松井 そうですね。 ―もし今も恐竜が生きていたらどうなっていたんでしょう? 松井 恐竜人類がいたかもしれないよね。われわれホモサピエンスはいなかったでしょうし。 ―恐竜人類! もしいたら、どれほどの賢さだったんでしょうか。というのも、恐竜って2億年も地球の支配者だったけど、その間ずっと、いわゆる"恐竜"だったじゃないですか。もしそこで生き延びても、その後の6500万年でどれだけ進化を遂げられたのかな? なぜ隕石は地球にぶつからないのですか? - Quora. 例えば今の人類のような文明を築けていたと思いますか? 松井 そこはなんとも言えませんが、今の話につなげると、私は今、生物進化におけるウイルスの役割にも注目しているんですよ。 ―ウイルスによる生物進化? 松井 ダーウィニズム(ダーウィン 進化論 )はわかるでしょ? ―突然変異が起き、そのなかで環境に適したものが生き残り(自然淘汰)、その繰り返しが進化を生むという考え方ですよね。 松井 ダーウィニズムでは、遺伝子は親から子へ"垂直方向"に伝わっていきます。それに対して「ウイルスによる進化」は、遺伝子がウイルス感染によって"水平方向"に種全体に広まっていくという考えです。 ―確かにダーウィン進化論だと変化は少しずつ少しずつだけどウイルス感染なら種全体にパーッと変化が広がりますね。しかしあり得るんですか、そんなこと?

隕石(いんせき)が落ちて恐竜とかは絶滅したのに、なぜ今の地球には生き物がたくさんいるの?|読むらじる。|Nhkラジオ らじる★らじる

7キロメートル)の隕石に比べれば、かなり小さい。NASAはこうした類の大型の小惑星(直径0.

なぜ隕石は地球にぶつからないのですか? - Quora

――今私たちは人間以外の生き物について「絶滅してしまうかもしれない」って考えがちですけれども、私たち人間も生きていけなくなる可能性もありますよね? そうなんですよ。なので今のキーワードは"共存"なんですよね。"持続可能"って言葉もそうですけど、どうやったらみんなで一緒に住んでいけるか、1種類でも多くの動植物たちと一緒に生きていけるかをみんなで考えていく、思いやりが大事ですよね。 ――こころくん、先生方のお話を聞いてきてどんなことを感じましたか? 隕石(いんせき)が落ちて恐竜とかは絶滅したのに、なぜ今の地球には生き物がたくさんいるの?|読むらじる。|NHKラジオ らじる★らじる. 結構勉強になって、新しい1歩を踏み出せた感じがします。 ――それはよかったです! まだ私たち人間には見つけられてない生き物も含めて地球上にはいて、そういう生き物たちと一緒にどうやったら仲良くこの先も生きていけるかを考えていくきっかけになったらいいかなと思っています。こころくんもいろんな生き物を見るときにきょうのお話を思い出しながら考えてみてください。 は~い! ――きょうは、とても考えさせられる質問をありがとうございました。さようなら~。 さようなら~。 先生一同: 【放送】 2021/05/05 子ども科学電話相談 「動物」 成島悦雄先生(日本動物園水族館協会 専務理事) この記事をシェアする
で、その生き残った胎盤哺乳類はネズミくらいの大きさだったらしいんだ。それまでは恐竜がかっ歩していたので、夜にコソコソと命をつないでいたわけですよ。でも恐竜がいなくなっちゃったので、昼間も活躍できるようになったわけ。それでさ、草原や砂漠や森などいろんな場所に生活の場所を広げていったんだよね。 それによって最初は少なかったんだけれども、いろんな種類が生まれていって、今では地球上にいる哺乳類は5000種類くらいだって言われています。ただ恐竜が絶滅してから、だいたい6600万年くらいたっているわけですが、その間にずっと哺乳類が増え続けてきたわけではなくて、ある時期に生きていくための環境が悪くなって数を減らしてはいるんですね。でもその後にまたぶり返してきて、今のように5000種類くらいの哺乳類が地球上のいろんな場所に生きているわけ。海の中には、クジラとかイルカがいるでしょう? 地面の中には、モグラがいるじゃない? モグラ、確かにいますね。 確かにいるでしょ? (笑) あとは草原に行けばシカやウサギがいるじゃない? で、森に行けばニホンザルなんかがいる。そして夜になればコウモリが飛んでいるじゃない? あ~! 飛んでますね。 こころくんの家の近くにもいるかな? うん。 小さなコウモリが超音波を出して虫を取っているよね? そういうふうにいろんな場所で姿や形を変えた哺乳類が生きているわけ。でも残念ながら今は、地球の歴史の中で6番目の大きな絶滅の中にあるって言う研究者もいるんだよね。その原因は、私たち人間の活動がちょっとやり過ぎたんじゃないかなっていうことにあるらしいんだ。哺乳類ではそんなところですね。 ――こころくん、ほかの生き物の先生にも聞いてみましょうね。 ――川上先生、どうでしょうか? 川上先生: はい、どうもこんにちは! 川上でーす。 鳥は今、世界中に1万種類くらいいるんですよね。すごくたくさんいます。長い歴史のことを考えると恐竜のいた時代とかは、翼竜(よくりゅう)ってわかりますか? 空を飛んでいた大きなは虫類です。 あぁ~。 プテラノドンとか有名だけれども、昔、そういうのがいたんですよ。で、隕石が落ちたときに絶滅してしまいました。そうすると多分、空を飛ぶ競争相手がいなくなったというのが一つあると思うんですよね。で、恐竜も絶滅したので、恐竜は鳥を襲って食べることがあったと思いますから、そういう敵もいなくなりました。そして、隕石が落ちたあと一度はとても大変なことになったけど、そのあとは植物が生えてきて、いろんな昆虫も増えてきたんです。そうすると、いろんな食べ物や暮らす場所があるから、それに合わせて鳥もどんどん種類が増えてきたんだと考えられます。いろんな生物がいるから、鳥もいろんな種類になったんだ!というふうに考えていいと思います。 勉強になりました!