数列 の 和 と 一般 項

お客 さん 既 読 無視
July 30, 2024, 11:59 pm

数列の和から,数列の一般項を求める公式を紹介します. 数列の和と一般項とは 数列の一般項が与えられたとき,数列の初項から第 $n$ 項までの和を求めることは基本的です.たとえば, 等差数列 や 等比数列 , 累乗 などに関しては,和の公式がよく知られています.では 逆に,数列の和の式が与えられたとき,その一般項を求めることはできるでしょうか. 実はこれは非常に簡単で,どのような数列に対しても,数列の和から一般項を求める公式が知られています. 数列の和と一般項: 数列 $\{a_n\}$ の初項から第 $n$ 項までの和を $S_n$ とするとき,次の等式が成り立つ. $$a_n =S_n-S_{n-1}\ \ (n \ge 2)$$ $$a_1=S_1$$ この公式の意味を一言で説明すると, (第 $n$ 項) = (初項から第 $n$ 項までの和)-(初項から第 $n-1$ 項までの和) ということです.これは考えてみれば当然ですよね.ただし,この等式が成り立つのは $n\ge 2$ のときのみであることに注意する必要があります.別の言い方をすると,第 $2$ 項から先の項に関しては,数列の和の差分で表すことができます.一方で,初項に関しては,当然 $S_1$ と一致しています.したがって,これら $2$ つの等式から $\{a_n\}$ の一般項が完全に求められるのです. 意味を考えれば,この公式が成り立つのは当然ですが,初項だけ別で扱う必要があることには注意してください. 例題 具体的な例題を通して,公式の使い方を説明します. 例題 数列 $\{a_n\}$ の初項から第 $n$ 項までの和 $S_n$ が $S_n=n^3$ であるとき,この数列の一般項を求めよ. $(i)$ $n\ge 2$ のとき,$a_n=S_n-S_{n-1}$ なので, $$a_n=n^3-(n-1)^3=n^3-(n^3-3n^2+3n-1)=3n^2-3n+1$$ $(ii)$ $n=1$ のとき,$a_1=S_1=1^3=1$ です.これは $(i)$ において,$n=1$ を代入したものと一致します. 初項90、公差-7の等差数列について負でない項すべての和Sを求めよ... - Yahoo!知恵袋. 以上,$(i)$, $(ii)$ より,$a_n=3n^2-3n+1$ です. この例題のように,$a_1$ の値が,$n\ge 2$ で求めた一般項の式に $n=1$ を代入した値と一致する場合は,一般項をまとめて書くことができます.

  1. 数列の和と一般項 応用

数列の和と一般項 応用

8 \times 0. 742 \fallingdotseq 9. 5$$ この数値に人の身長の $2. 3$ を加えると、$9. 5 + 2. 3 = 11. 8$ である。 この長さ $11. 8$(m)が木の高さですね!

数列の和 $S_n$ から一般項 $a_n$ を求めるときには、 $S_{n}-S_{n-1}=a_n\:(n\geq 2)$ $S_1=a_1$ という2つの公式を使う。場合分けを忘れないように!