不等式 の 表す 領域 を 図示 せよ

青 鬼 全員 生還 ルート
July 31, 2024, 10:56 am

2zh] これをx軸とy軸に関して対称となるように折り返して, \ 領域\maru2が得られる. 2zh] さらに, \ \maru2を平行移動すると, \ 領域\maru1(黄色の部分)が得られる. 2zh] これを折り返すと, \ 求める領域となる. \\[1zh] ちなみに, \ 本問は2013年大阪大学(理系)の大問2である.

徳島大学2020理工/保健 【入試問題&解答解説】過去問

2zh] しかし, \ むしろ逆に, \ \bm{絶対値のおかげで対称性が生まれ, \ 容易に図示できる}のである. \\[1zh] が表す領域は頻出するので暗記推奨である. 2zh] \bm{頂点(a, \ 0), \ (0, \ a), \ (-\, a, \ 0), \ (0, \ -\, a)の正方形の周および内部}を表す. $1\leqq\zettaiti{\zettaiti x-2}+\zettaiti{\zettaiti y-2}\leqq3$\ の表す領域を$xy$平面に図示せよ. \\ 絶対値を普通に場合分けしてはずそうなどと考えると地獄絵図になる. 2zh] 本問は, \ \bm{対称性と平行移動の考慮が必須}である. \\[1zh] まず, \ 求める領域がx軸とy軸に関して対称であることを確認する. 2zh] 結局, \ 第1象限だけを考えればよく, \ このとき\bm{内側の絶対値がはずせ}, \ \maru1となる. \\[1zh] \maru1が, \ \bm{\zettaiti x+\zettaiti y\leqq a型の領域を平行移動したもの}と気付けるかが重要である. 2zh] \zettaiti x+\zettaiti y\leqq a型の領域を1つの型として暗記していなければ厳しいだろう. 不等式の表す領域 | 大学受験の王道. 2zh] もちろん, \ 平行移動の基本知識も必要である. 2zh] \bm{x方向にa, \ y方向にb平行移動するとき, \ x\, →\, x-a, \ y\, →\, y-b\ とする}のであった. \\[1zh] 求める領域の第1象限が\maru1であるから, \ \maru1さえ図示できれば, \ 後は折り返すだけである. \\[1zh] \maru1を図示するには, \ 1\leqq\zettaiti x+\zettaiti y\leqq3\ \ \cdots\cdots\, \maru2\ を図示し, \ 平行移動すればよい. 2zh] \maru2を図示するために, \ \maru2の対称性を確認する. 2zh] \maru2はx軸とy軸に関して対称であるから, \ 第1象限だけを考え, \ 折り返せばよい. 2zh] \maru2の第1象限は, \ -\, x+1\leqq y\leqq x+3\ (水色の部分)である.

不等式の表す領域 | 大学受験の王道

【数Ⅱ】指数関数・対数関数:指数の方程式の解き方 ■問題文全文 3/9x-10(1/3)x+3≧0を解け ■動画情報 科目:数学 指導講師:渡邊先生 数Ⅱ:対数:log1/3 (x-1)≦1を解け ■動画情報 科目:数Ⅱ 指導講師:渡邊先生 【数Ⅱ】対数関数:領域の図示(対数の領域図示は底と真数条件に注意!! ):宮崎大学(工・前期)2014年第5問:不等式log[x]y<2+3log[y]xの表す領域を座標平面上に図示せよ。 不等式log[x]y<2+3log[y]xの表す領域を座標平面上に図示せよ。 ■チャプター 0:00​ オープニング 0:05​ 問題文 0:15​ […]

だったら、最大値も何も、x+yは最初から0になってしまいますよ?」 そのように問いかけても、何を言われたのかわからず、きょとんとする人もいます。 ふっと誤解してしまったことというのは、なかなか解決しません。 以後、「え?」「え?」と言う相手に、延々と解説することになってしまう場合があります。 中1数学の「文字式」「等式の性質」や「方程式」が本当には理解できていなかったことが、ここにきて噴出したのでしょう。 文字式と方程式の違いが理解できていなかったのです。 中学数学は大切です。 y=-x 、という解き方が間違っているなら、じゃあどうしたらよいのか? x+y がわからなくて、それを求めようとしているのです。 では、それを文字を用いて表したらよいでしょう。 ・・・そんなことをしていいの? 結局、いつも、それがネックとなります。 良いのです。 定義すれば、どんな文字をどれだけ使ってもよいのです。 x+y=k とおいてみましょう。 これで移項できます。 y=-x+k これは、傾き-1、y切片kの直線であることがわかります。 でも、kがわからないから、そんな直線は、描けない・・・。 確かに、1本には定まらないです。 y切片によって異なる、平行な直線が、無数に描けます。 そこで、k、すなわち y 切片が最大で、しかも領域Dを通る直線をイメージします。 図に実際に描いてみます。 それが、kが最大値のときの直線です。 そのときのkを求めたらよいのです。 kが最大で、領域Dを通る。 図から、直線3x+2y=12と、x+2y=8の交点を通るとき、kは最大であることが読み取れます。 では、2直線の交点を求めましょう。 式の辺々を引いて、 2x=4 x=2 これをx+2y=8に代入して、 2+2y=8 2y=6 y=3 よって、2直線の交点の座標は、(2, 3) です。 この点を通るとき、kは最大となります。 直線x+y=kで、(2, 3)を通るのですから、 K=2+3=5 よって、x+yの最大値は、5です。 解き方の基本は同じですね。 2x-5y=kとおくと、 -5y=-2x+k y=2/5x-1/5k これは、先ほどと同じく(2, 3)を通ればkが最大値でしょうか? うん? 徳島大学2020理工/保健 【入試問題&解答解説】過去問. 直線の向きが何だか違わない? 先ほどの直線は、右下がりでした。 しかし、今回の直線は、右上がりです。 では、右上がりの直線で、y切片が最大のところを見ればよいのでしょうか?