整数の問題について数学Aのあまりによる整数の分類で証明する問題... - Yahoo!知恵袋

ポケモン ウルトラ サンムーン レックウザ 入手 方法
July 31, 2024, 12:55 am

25)) でドロップアウトで無効化処理をして、 畳み込み処理の1回目が終了です。 これと同じ処理をもう1度実施してから、 (Flatten()) で1次元に変換し、 通常のニューラルネットワークの分類予測を行います。 モデルのコンパイル、の前に 作成したモデルをTPUモデルに変換します。 今のままでもコンパイルも学習も可能ですが、 畳み込みニューラルネットワークは膨大な量の計算が発生するため、 TPUでの処理しないととても時間がかかります。 以下の手順で変換してください。 # TPUモデルへの変換 import tensorflow as tf import os tpu_model = tf. contrib. tpu. keras_to_tpu_model ( model, strategy = tf. TPUDistributionStrategy ( tf. cluster_resolver. TPUClusterResolver ( tpu = 'grpc' + os. environ [ 'COLAB_TPU_ADDR']))) 損失関数は、分類に向いているcategorical_crossentopy、 活性化関数はAdam(学習率は0. 剰余類に関する証明問題②(連続する整数の積) | 教えて数学理科. 001)、評価指数はacc(正解率)に設定します。 tpu_model. compile ( loss = 'categorical_crossentropy', optimizer = Adam ( lr = 0. 001), metrics = [ 'acc']) 作成したモデルで学習します。 TPUモデルで学習する場合、1回目は結構時間がかかりますが、2回目以降は速いです。 もしTPUじゃなく、通常のモデルで学習したら、倍以上の時間がかかると思います。 history = tpu_model. fit ( train_images, train_labels, batch_size = 128, epochs = 20, validation_split = 0. 1) 学習結果をグラフ表示 正解率が9割を超えているようです。 かなり精度が高いですね。 plt. plot ( history. history [ 'acc'], label = 'acc') plt. history [ 'val_acc'], label = 'val_acc') plt.

  1. 剰余類に関する証明問題②(連続する整数の積) | 教えて数学理科

剰余類に関する証明問題②(連続する整数の積) | 教えて数学理科

勉強ノート公開サービスClearでは、30万冊を超える大学生、高校生、中学生のノートをみることができます。 テストの対策、受験時の勉強、まとめによる授業の予習・復習など、みんなのわからないことを解決。 Q&Aでわからないことを質問することもできます。

整数の問題について 数学Aのあまりによる整数の分類で証明する問題あるじゃないですか、 たとえば連続する整数は必ず2の倍数であるとか、、 その証明の際にmk+0. 1... m-1通りに分けますよね、 その分けるときにどうしてmがこの問題では2 とか定まるんですか? mk+0. m-1は整数全てを表せるんだからなんでもいい気がするんですけど、 コイン500枚だすので納得いくような解説をわかりやすくおねがします、、、 数学 ・ 1, 121 閲覧 ・ xmlns="> 500 ベストアンサー このベストアンサーは投票で選ばれました 質問は 「連続する2つの整数の積は必ず2の倍数である」を示すとき なぜ、2つの整数の積を2kと2k+1というように置くのか? ということでしょうか。 さて、この問題の場合、小さいほうの数をnとすると、もう1つの数はn+1で表されます。2つの整数の積は、n(n+1)になります。 I)nが偶数のとき、n=2kと置くことができるので、 n(n+1)=2k(2k+1)=2(2k^2+k) となり、2×整数の形になるので、積が偶数であることを示せた。 II)nが奇数のとき、n=2k+1と置くことができるので、 n(n+1)=(2k+1)(2k+2)=2{(2k+1)(k+1)} I)II)よりすべての場合において積が偶数であることが示せた。 となります。 なぜ、n=2kとしたのか? これは【2の倍数であることを示すため】には、m=2としたほうが楽だからです。 なぜなら、I)において、2×整数の形を作るためには、nが2の倍数であればよいことが見て分かります。そこで、n=2kとしたわけです。 次に、nが2の倍数でないときはどうか?を考えたわけです。これがn=2k+1の場合になります。 では、m=3としない理由は何なのでしょうか? それは2の倍数になるかどうかが分かりにくいからです。 【2×整数の形】を作ることで【2の倍数である】ことを示しています。 しかし、m=3としてしまうと、 I')m=3kの場合 n(n+1)=3k(3k+1) となり、2がどこにも出てきません。 では、m=4としてはどうか? I'')n=4kの場合 n(n+1)=4k(4k+1)=2{2k(4k+1)} となり、2の倍数であることが示せた。 II'')n=4k+1の場合 n(n+1)=(4k+1)(4k+2)=2{(4k+1)(2k+1)} III)n=4k+2の場合 ・・・ IV)n=4k+3の場合 と4つの場合分けをして、すべての場合において偶数であることが示せた。 ということになります。 つまり、3だと分かりにくくなり、4だと場合分けが多くなってしまいます。 分かりやすい証明はm=2がベストだということになります。 1人 がナイス!しています